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Abstract
In this paper, the non-local mixing of coherent current states in d-wave superconducting banks
is investigated. The superconducting banks are connected via a ballistic point contact. The
banks have mis-orientation and phase difference. Furthermore, they are subjected to a tangential
transport current along the ab plane of d-wave crystals and parallel to the interface between the
superconductors. The effects of mis-orientation and external transport current on the
current–phase relations and current distributions are the subjects of this paper. It is observed
that, at values of phase difference close to 0, π and 2π , the current distribution may have a
vortex-like form in the vicinity of the point contact. The current distribution of the
above-mentioned junction between d-wave superconductors is totally different from the
junction between s-wave superconductors. The interesting result which this study shows is that
spontaneous and Josephson currents are observed for the case of φ = 0.

1. Introduction

The weak link between two d-wave superconductors is a long-
studied problem theoretically [1–9]. A theoretical investigation
of the total transparent Josephson junction between two d-
wave superconductors has been done in [1]. Using the quasi-
classical approach, a d-wave Josephson Junction with low-
transparent interface has been studied in [2]. Anisotropic
and unconventional pairing symmetry has been considered
for d–I–d systems and zero-energy states (ZES) have been
considered as the result of sign change of the order parameter
observed in paper [3]. A spontaneous current parallel to the
interface between d-wave superconductors has been presented
in paper [4]. The junction between current-carrying states of
d-wave superconductors, has been investigated in [4]. The
authors of paper [4] by numerical self-consistent calculations
show that the supercurrent parallel to the junction may flow
in the direction opposite to the current direction at the
superconducting banks. The effect of the transparency of the
d-wave Josephson junction interface has been studied in [5].
In [6], the effects of transparency and mis-orientation of two
d-wave crystals have been investigated analytically. Using
the Bogoliubov–de Gennes equations, the ZES as the origin
of a zero bias conductance peak (ZBCP) have been studied
in [7, 8]. ZES have been introduced as the fingerprint of

unconventional pairing symmetry in [7, 8]. In [9], a special
geometry of the d-wave superconducting layer as a weak link
has been investigated and the π Josephson junction has been
observed. Also, because of the high critical temperature of
d-wave superconductors (and cheap production technology),
much experimental work related to the d-wave weak link has
been done in the last two decades [10–16]. A complete
review of these experiments has been presented in a review
paper [10]. A phase-sensitive experiment (phase of the
superconducting order parameter) has been presented by the
authors of [11] for the determination of the symmetry of the
order parameter in high Tc cuprate superconductors. Using
phase interference experiments in the Josephson junctions,
d-wave pairing symmetry in the cuprate superconductors
has been observed in [11–13]. A nonsinusoidal form of
the current–phase diagram has been observed experimentally
in [14]. The authors of [15] have measured the current–phase
relationship of the symmetric grain boundary weak link and
observed that the temperature controlled the sign change of the
first harmonic of the Josephson current (I (φ) = I1 sin φ +
I2 sin 2φ + · · ·). Because of competition between the first
and second harmonics of Josephson current, the nonmonotonic
dependence of the critical current on temperature has been
reported in [15]. An experimental investigation of a Josephson
junction between two d-wave superconductors has been done
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and the effect of the insulator between them has been studied
in [16]. They observed 0 − π transitions by reducing
the width of the insulator in the d–I–d Josephson junction.
On the other hand, it is well known that non-locality and
the Josephson effect coexist. Charged particles orbiting
around a magnetic flux are influenced by it in the form
of a phase difference, although the region including the
flux is impenetrable for charged particles. This phase, as
the Aharonov–Bohm phase, is a demonstration of the non-
locality of quantum mechanics. While the supercurrent
in a superconducting bulk depends on the phase gradient
locally [17], j(r) ∝ ∇ϕ(r), the Josephson supercurrent
depends on phase difference non-locally [18], j(ϕ2 − ϕ1) ∝
sin (ϕ2 − ϕ1) ∝ (ϕ2 − ϕ1). The interplay between local
supercurrent states and non-local phase difference between
the superconducting bulks is an interesting problem. Local
supercurrent states are introduced by the superfluid velocity
of Cooper pairs. The non-locality of the Josephson current
in the point contacts and the effect of superfluid velocity on
the current states in narrow films and wires have been studied
in [19]. An anomalous periodic behavior in terms of magnetic
flux has been observed in [19]. This anomalous property is
demonstrated as a result of a non-locality of supercurrents
in the Josephson junction [19]. In addition, experimental
results of [19] have been confirmed in analytical calculations
of [20]. The dynamical Josephson junction between s-wave
superconductors has been investigated in [21]. The authors
of [21] studied the quantum interference between right and left
s-wave superconductors, in which parallel transport currents
flow. The existence of two antisymmetric vortex-like currents
near the contact and at φ � π as a new phenomenon was
reported in [21]. The authors of [21] found that the total
current is not the vector sum of the Josephson and transport
currents because of a new term in the current. We called
it the ‘interference’ current and it can also be named the
‘parallel Josephson current’. In [21], the effect of reflection
at the interface between s-wave superconductors has been
investigated analytically and numerically.

In this paper, a planar weak link between two d-
wave superconductors with a phase difference between their
order parameters is investigated. The ab planes of two
superconductors have a mis-orientation and the c axes of the
two crystals are parallel to the interface between the d-wave
superconductors. In the center of the interface I create an ideal
transparent thin slit with length L and width a. Interference
between wavefunctions of the left and right superconductors
occurs through this slit. The remaining part of the interface is
an ideal insulator and is impenetrable for Cooper pairs. Also,
two transport supercurrents at the ab planes flow parallel to the
insulator and the contact plane (see figure 1). The Josephson
current from one of the bulks to another is a result of the
interference between the states with phase difference φ, as
is predicted in [18]. The contact (thin slit) scales, length L
and width a, are larger than the Fermi wavelength and smaller
than the coherence length of superconductivity. Furthermore,
these scales are small compared to the mean free path of
quasi-particles. Therefore the quasi-classical approximation
for the ballistic point contact can be used. In this paper, the

Figure 1. Model of the contact in the insulating partition, along the
ŷ, between two mis-oriented d-wave superconducting bulks with
transport supercurrent on the banks. The plane of the paper is the ab
plane of d-wave superconductors. In the d-wave superconductors like
YBaCuO the ab plane is the plane of CuO.

Eilenberger equations for the above-mentioned structure, are
solved and Green functions are obtained. The effects of mis-
orientation and phase difference between order parameters and
superfluid velocity on the current distributions and current–
phase graphs are investigated.

The organization of the rest of this paper is as follows. In
section 2 the quasi-classical equations for Green functions are
presented. The obtained formulae for the Green functions are
used to analyze a current state in the ballistic point contact.
Also the effects of transport current and mis-orientation on the
current distribution at the contact plane are investigated. In
section 3 results of the simulation of the current distribution
in the vicinity of the contact is investigated. An analytical
investigation of this system near the critical temperature is in
section 4. The paper’s conclusions are presented in section 5.

2. Formalism and basic equations

The Eilenberger equations for the ξ -integrated Green’s
functions are used to describe the coherent current states in a
superconducting ballistic micro-structure [23]:

vF · ∂

∂r
̂Gω(vF, r) + [ωτ̂3 + ̂	(vF, r), ̂Gω(vF, r)] = 0 (1)

where

̂	 =
(

0 	

	† 0

)

,

̂Gω(vF, r) =
(

gω fω
f †
ω −gω

)
(2)

	 is the superconducting order parameter, τ̂3 is the Pauli
matrix, and ̂Gω(vF, r) is the matrix Green function which
depends on the electron velocity on the Fermi surface vF, the
coordinate r and the Matsubara frequency ω = (2n + 1)πT ,
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with n and T being an integer number and temperature,
respectively. Also the normalization condition

gω =
√

1 − fω f †
ω (3)

with f †
ω being the time-reversal counterpart of fω should be

satisfied by solutions of the Eilenberger equations. In general,
	 depends on the direction of vF and r and it can be determined
by the self-consistent equation:

	(vF, r) = 2π N(0)T
∑

ω>0

〈V (vF, v′
F) fω(v′

F, r)〉v′
F

(4)

and the current density by

j(r) = −4π ieN(0)T
∑

ω

〈vFgω(vF, r)〉vF (5)

respectively, where V (vF, v′
F) is the interaction potential, N(0)

is the 2D density of states at the Fermi surface for each spin
projection and 〈· · ·〉 is the averaging over directions of vF.
The solution of the matrix equation (1) together with the self-
consistency gap equation (4), and the Maxwell equation for
superfluid velocity and normalization condition determines the
current j(r) in the system. The thicknesses of the d-wave
superconductors are assumed to be smaller than the coherence
length ξ0 = h̄vF

π	
. Thus the spatial distributions of 	(r) and j(r)

depend only on the coordinates in the plane of the film and the
Eilenberger equation (1) reduces to 2D equations.

Also equation (1) for the Green functions ̂Gω(r, vF) have
to be supplemented by the condition of specular reflection at
the region (x = 0, |y| � a) and continuity of solutions across
the point contact (x = 0, |y| � a). Far from the contact the
Green functions should be coincident with the bulk solutions
and the current should be a homogeneous transport current
along the y axis.

In this formalism, the current has to be determined by
a self-consistent gap equation (4) together with the Maxwell

equation for superfluid velocity (Ampere’s law d2 Ay(x)

dx2 =
−μ0 J tot

y (x) with μ0 for free space and vs = − e
mc Ay(x)

for superfluid velocity as in paper [5, 24]). However,
for simplicity, the self-consistency of the order parameter
is ignored and a step function is considered for spatial
dependence and I do not consider the effect of current
distribution on the superfluid velocity. I believe that, as in the
papers [25, 26], the self-consistent investigation of the d-wave
Josephson junction does not show a qualitative difference from
the non-self-consistent results.

For 	 and vs being constant at each half-plane an
analytical solution for the Eilenberger equations can be
found by the method of integration along the quasi-classical
trajectories of quasi-particles. At any point, r = (x, y), all
ballistic trajectories can be categorized as transit and non-
transit trajectories.

For the transit trajectories the Green functions satisfy
continuity at the contact and the non-transit trajectories satisfy
the specular reflection condition at the partition, (x = 0, |y| �
a). Also, all transit and non-transit trajectories should satisfy
the boundary conditions in the left and right bulks. Making

use of the solutions of the Eilenberger equations, the following
expression is obtained for the current at the slit:

j(x = 0, |y| < a, φ, vs, αl, αr) = 4πeN(0)vFT

×
∑

ω>0

〈

v̂
ω̃(�l + �r) − iη	l	r sin φ

�l�r + ω̃2 + 	l	r cos φ

〉

v̂
(6)

where 	l,r = 	0 cos(2(θ − αl,r)) for dx2−y2 symmetry �l,r =
√

ω̃2 + 	2
l,r, ω̃ = ω + ipFvs with ω being the Matsubara

frequency, vs is the superfluid velocity and v̂ = vF/vF is the
unit vector, η = sgn(vx). In this non-stationary Josephson
junction, vs �= 0, the current has both jx and jy components.
I define the Josephson current, external transport current,
spontaneous current and interference current as

jJoseph = j(φ, vs, αl, αr)x̂ (7)

jTrans = j(φ = 0, vs �= 0, αl = αr = 0) ŷ = jBulk, (8)

jSpont = j(φ �= 0, vs = 0, αl �= 0, αr �= 0) ŷ (9)

jInter = j(φ, vs, αl, αr) ŷ − jSpont − jTrans (10)

respectively. The Josephson current, jJoseph = jx , is
normal to the interface between superconductors as was
considered by Josephson in [18] and the parallel component
of current jy consists of the three above-mentioned current
terms; an external transport current, spontaneous current and
‘interference’ current. The new current term, ‘interference’
current, depends on the superfluid velocity, the orientations
(with respect to the interface) and the phase difference between
order parameters. The current term, jInter, is completely
different from the transport current term, jTrans, on the banks.

Thus, in addition to the spontaneous current for the
stationary d-wave Josephson junction (investigated in [6]) and
the transport current, I observe another current parallel to
the interface (jInter). In particular, at φ � π it may go
in the opposite direction to the external transport current on
the banks (depending on the orientations). This sign reversal
of tangential supercurrent, which is the origin of vortex-like
currents near the orifice, has been observed already in relation
to the d-wave junction in [4]. At the two sides of the vortex-
like currents, the flowing currents are parallel and antiparallel
to the external supercurrent at the superconducting banks.
In [4] a superconductor–normal–superconductor trajectory for
particles has been considered whereas in practice there is one
superconductor coupled to the normal metal. So, because of
one superconductor in the structure of [4] it was impossible
to define the phase difference. In the case of the junction
between s-wave superconductors in [21], it was observed that
sign reversal can be seen only for φ � π . So, for the s-wave
counterpart of the set-up of paper [4] it is impossible to see
a sign reversal because phase difference φ has no meaning
for a system including one superconductor. However, in our
calculations in this paper I have observed that this sign reversal
and vortex appearance can be seen at φ = 0, depending on
mis-orientation. In the case of the d-wave in paper [4] in
the absence of a phase difference, a sign reversal of current
has been observed. I also observed a sign change of current
and vortex for suitable mis-orientation of ab planes (αl =
0, αr = π

4 ), which confirms the results of paper [4]. The planes
αl = 0 and αr = π

4 correspond to the planes (100) and (111),
respectively.
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Figure 2. Tangential current jy versus φ for T/Tc = 0.1,
αl = αr = 0 in units of j0 = 4πeN(0)vFT . This is like the case of a
junction between conventional superconductors [21].

3. Discussion

I have investigated the effects of mis-orientation and superfluid
velocity on the current–phase relation and current distribution
numerically and the results are as follows.

(1) The vortex-like currents appear at values of φ when
the parallel current is maximum and positive while the
external transport current is negative (figures 2–5).

(2) At αl = αr = 0 and arbitrary φ, the current distributions
and current–phase graphs are identical with the s-wave
which is investigated in [21]. For example, at αl = αr = 0
and φ = π two anti-symmetric vortex-like currents are
observed and their common axis is normal to the interface
(figure 6).

(3) At αl = 0, αr = ±π
4 and φ = π , two vortex-like currents

are observed. Their common axis is rotated as much as
∓π

4 (figures 8 and 9). This case occurs for αl = 0, φ = π

and arbitrary αr with the rotated axis rotating as much as
(−αr ).

(4) The appearance of vortex-like currents can be controlled
by mis-orientation. For example, at φ = 0 and αl =
αr = 0, I cannot observe the vortex-like currents in the
same manner that I cannot observe in the s-wave junction
(figure 7). However, for φ = 0, αl,r = 0, αr,l = π

2 the
vortex-like currents appear, since, from (6) and for dx2−y2

symmetry, I have

j(r, φ = π, vs, αl, αr) = j
(

r, φ = 0, vs, αl, αr + π

2

)

.

(11)
(5) In figures 3–5 it is observed that, for φ = 0 and

consequently without any external magnetic flux, the
interference between coherent current states can occur
and the vortex-like currents can be observed because
mis-orientation plays the role of the phase difference in
equation (11).

Figure 3. Tangential current jy versus phase φ for T/Tc = 0.1,
αl = 0 and αr = π

2 .

Figure 4. Tangential current jy versus phase φ for T/Tc = 0.1,
αl = 0 and αr = π

4 .

(6) The parallel current, jy , is plotted in terms of the phase
difference for different superfluid velocities and at αl =
αr = 0, the maximum value of current and the appearance
of vortex-like currents occur at φ = π . In this case,
far from φ = π , I observe a constant current that is the
external transport current on the banks (figure 2).

(7) For αl,r = 0, αr,l = ±π
4 the maximum values of the

parallel current, jy , and consequently the vortices, appear
at φ = 0, φ = π and φ = 2π (figures 4 and 5).

(8) For αl,r = 0, αr,l = π
2 the current–phase graphs are

similar to the case of αl = αr = 0 but a displacement
as much as π occurs (figures 2 and 3). Thus the
vortices can be observed at φ = 0 and φ = 2π . But
at φ = π I do not observe the vortex-like currents.
This can be another difference between conventional and
unconventional Josephson junctions.

4
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Figure 5. Tangential current jy versus phase φ for T/Tc = 0.1,
αl = 0 and αr = − π

4 .

-1 0 1

-1

0

1

Figure 6. Vector plot of the current for T/Tc = 0.1,
PFvs/	0(0) = 0.5, φ = π , αl = αr = 0. Axes are marked in units of
a. Because of our non-self-consistent formalism ξ0 = 5a. It is
similar to the s-wave junction in [21, 22].

(9) The superposition of dashed lines in figures 4 and 5 for
zero superfluid velocity, and all the lines of figure 2, for
zero mis-orientations apparently give us the three lines
of figures 4 and 5. This means that in this case the
tangential current is a superposition of transport current,
‘interference’ current [21] and spontaneous current [6].

(10) The tangential current for αl = αr = 0 and αl,r =
0, αr,l = π

2 is an even function of Josephson phase φ but
for αl,r = 0, αr,l = ±π

4 it is neither an even nor an odd
function of the phase difference φ and the symmetry will
be broken.

The superfluid of pairs creates the transport current but the
spontaneous current is produced by both. mis-orientation and
phase difference However, the ‘interference’ current depends

-1 0 1

-1

0

1

Figure 7. Vector plot of the current for φ = 0, αl = 0, αr = 0 and
T/Tc = 0.1, PFvs/	0(0) = 0.5. Vortices disappear but transport
supercurrent flows.

-1 0 1

-1

0

1

Figure 8. Vector plot of the current for φ = π , αl = 0, αr = π

4 and
T/Tc = 0.1, PFvs/	0(0) = 0.5. Axes are marked in units of a.

on all of the parameters (phase difference, mis-orientation and
superfluid velocity) and can be the result of the non-locality of
the supercurrent.

The spatial distributions of the order parameter and the
current near and precisely at the contact are calculated using
the Green function along the transit and non-transit trajectories
numerically. Transit trajectories for each point come from
the orifice (transparent part of the interface x = 0, |y| � a)
while non-transit trajectories form the remaining part of the
interface which is impenetrable (reflective part of the interface
x = 0, |y| � a). The current distributions are calculated and
simulated numerically for T/Tc = 0.1, pFvs/	0(0) = 0.5
and various choices of mis-orientation for φ = π (figures 8, 6
and 9) and φ = 0 (figure 7). The ‘interference’ current that
plays a central role for the production of vortex-like current
has been observed here and also in [21]. At the phase values
0 < φ < π

2 , 3
2π < φ < 2π and αl = αr = 0, the interference

5
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-1 0 1

-1

0

1

Figure 9. Vector plot of the current for φ = π , αl = 0, αr = − π

4 and
T/Tc = 0.1, PFvs/	0(0) = 0.5. The axis of vortices is rotated.

current is very small and thus the total current is close to the
vector sum of transport, spontaneous and Josephson currents.
But, for π

2 < φ < 3
2π the ‘interference’ current appears and

the total current deviates from the vector sum of the three old
currents [21]. Also, for zero mis-orientation the spontaneous
current is zero.

The ‘interference’ current is always antiparallel to the
transport current. But the spontaneous current may be parallel
or antiparallel to the transport current. If the algebraic
sum of transport, ‘interference’ and spontaneous currents is
antiparallel to the transport current on the banks, the vortex-
like currents can be observed (figure 6).

Thus the appearance of the vortex-like currents can be
controlled by mis-orientation and phase difference. It is
remarkable that, far from the contact |r| ∼ ξ0 > a for all
φs, mis-orientations, temperatures T and superfluid velocities,
the distributions of currents tend to the tangential transport
currents on the banks.

4. Near the critical temperature

For temperatures close to the critical temperature, Tc−T � Tc,
the problem can be solved analytically. At the contact I have

j = jJoseph + jSpont + jTrans + jInter (12)

jJoseph = 2 jc sin φ

〈

v̂x sgn(vx)

(

	l	r

	2
0

)〉

v̂

(13)

jSpont = 2 jc sin φ

〈

v̂y sgn(vx)

(

	l	r

	2
0

)〉

v̂

(14)

jTrans = − jck

〈

v̂v̂y

(

	l	r

	2
0

)〉

v̂

(15)

jInter = jck(1 − cos φ)

〈

v̂̂vy

(

	l	r

	2
0

)〉

v̂

(16)

where, as in [21]

jc(T, vs) = π |e|N(0)vF

8

	0
2(T, vs)

Tc
(17)

is a critical current of the contact at (Tc − T ) � Tc, k is a
standard notation:

k = (14ς(3)/π3)(vs pF/Tc). (18)

For the high value of temperatures near the Tc, the critical
values of currents have a linear dependence on the 	0

2, which

can be replaced by 	0 =
√

( 32π2

21ζ(3)
)Tc(Tc − T ). On the

other hand, the spontaneous and Josephson currents are the
sinusoidal functions of the phase difference, as is expected for
the currents near the Tc. Contrary to these two current terms,
the ‘interference’ current is an even function of the phase
difference. The current is divided into four parts, Josephson
current jJoseph, spontaneous current, transport current in the
banks jTrans and the ‘interference’ current jInter. It is observed
that the currents generally and near the Tc obviously, depend
not only on the mis-orientation |αl − αr| but also on the
orientations with respect to the interface. Because in the
expressions 〈̂v	l	r · · ·〉, the result of angular integrations may
include both |αl − αr| and |αl + αr| terms. For example,
for Josephson and spontaneous currents in (13) and (14) by
angular integration on the Fermi surface I have

jJoseph =
(

2 jc sin φ

15π

)

[15 cos(2αl − 2αr)

− cos(2αl + 2αr)]̂x (19)

and for the spontaneous current

jSpont =
(−8 jc sin φ

15π

)

sin(2αl + 2αr)̂y. (20)

Also it is found that, for φ = π and exactly at the contact,
the ‘interference’ current jInter is antiparallel to the jTrans. For
φ = π the ‘interference’, Josephson and spontaneous currents
are jInter = −2jTrans, jJoseph = 0 and jSpont = 0, respectively,
Consequently it is found that jy = jTrans + jInter + jSpont =
−jTrans. In this case while the Josephson current is zero the
terms jy and jTrans that are directed opposite to each other
control the appearance of vortex-like currents in the vicinity
of the point contact. In addition, for φ = 0, αl,r = 0 and
αr,l = π

2 , I can observe the vortex-like currents. This property
can be a difference between d-wave and s-wave Josephson
junctions, because in the s-wave Josephson junction the vortex-
like currents are observed only for φ = π [21], while in
the present calculations for d-wave Josephson junctions, the
vortex-like currents may appear even for φ = 0. Thus, for fixed
values of the temperature and superfluid velocity, the presence
of vortex-like currents can be controlled by mis-orientation and
phase difference.

5. Conclusions

I observed the vortex-like currents in the vicinity of the point
contact for d-wave Josephson junctions as well as for s-wave

6
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junctions in [21]. The interference current as a result of
non-local supercurrent states appears. It may flow opposite
to the external transport current. For φ = π , αl = 0
and αr = ±π

4 vortex-like currents with the rotated axis are
observed. But, as is obtained in [21], the axis of vortex-like
currents in the s-wave Josephson junction is normal to the
interface. Thus, this rotated axis can be used to distinguish
between s-wave and d-wave junctions. Also it can be exerted
to distinguish between the junction between two pure s-waves
and the junction between the mixing of conventional and
unconventional order parameters (e.g. d + is). In addition
to the ZES, this rotated axis can be another ‘fingerprint’ of
d-wave pairing symmetry. Another interesting result is the
behavior of the system in the absence of phase difference. For
the s-wave system only in the presence of the phase difference,
φ � π �= 0, the vortex-like currents appear [21], while for
the d-wave Josephson junction at zero phase and zero external
magnetic flux, it is possible to observe the vortex-like currents
for some mis-orientations. This can be a theoretical reason that
the mis-orientation plays a role instead of the phase difference
(Josephson phase). In the stationary Josephson junction vs = 0
the tangential interference current (spontaneous current) will
be observed only for φ �= 0 but in the opposite case vs �= 0 the
tangential current, even in the absence of phase difference, may
be observed. In addition, this tangential current can flow in
the opposite direction to the external transport current and this
factor can produce the vortex-like currents. Finally, the mis-
orientation of superconducting ab planes (pairing symmetry
in the momentum space) playing the role of the magnetic
Josephson phase (φ = q�

h̄ , where q and � are electric charge
and magnetic flux, respectively) is a reason for the magnetic
nature of the pairing mechanism in high Tc superconductors
which remains as an unknown and famous problem.
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